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Abstract

Moving software development into the engineering arena requires controllability, and to control a

process, it must be measurable. Measuring the process does no good if the product is not also

measured, i.e., being the best at producing an inferior product does not defme a quality process.

Also, not every number extracted from software development is a valid measurement. A valid

measurement only results when we are able to verify that the number is representative of the attribute

that we wish to measure. Many proposed software metrics are used by practitioners without these

metrics ever having been validated, leading to costly but often useless calculations. Several

researchers have bemoaned the lack of scientific precision in much of the published software

measurement work and have called for validation of software metrics by measurement theory. This

dissertation applies measurement theory to validate fifty proposed object-oriented software metrics

(see Li and Henry, 1993; Chidamber and Kemerrer, 1994; Lorenz and Kidd, 1994).



L Background and Objectives

The need for software metrics

Software development historically has been the arena of the artist. Artistically developed

code often resulted in arcane algorithms or spaghetti code that was unintelligible to those who had

to perform maintenance. Initially only very primitive measures such as lines of code (LOC) and

development time per stage of the development life cycle were collected. Projects often ran over

estimated time and over budget. In the pursuit of greater productivity, software development

evolved into software engineering. Part of the software engineering concept is the idea that the

product should be controllable. DeMarco [ 1982] reminds us that what is not measured cannot be

controlled.

Measurement is the process whereby numbers or symbols are assigned to attributes of entities

in such a manner as to describe the attribute in a meaningful way. We cannot take measurements

and then apply them to just any attributes. Unfortunately this is exactly what the software

development community has been doing. [Fenton, 1994]

Because people observe things differently (and often intuitively feel differently about things),

a model is usually defined for the entities and attributes to be measured. The model requires

everyone to look at the subject from the same viewpoint. Fenton [ 1994] uses the example of human

height. Should posture be taken into consideration when measuring human height? Should shoes

be allowed? Should we measure to the top of the head or the top of the hair? The model forces a

reasonable consensus upon the measurers.

As has already been stated, control of a process or product requires that the process or

product is measurable; therefore, control of software requires software measures [Baker, et al.,



1990]. It doesno good to measurethe processif the product is not measured.

producing aninferior product doesnot defmea quality process.
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Being the best at

The needfor metric validation

Choosingmetrics becomesahorseand cart or a chicken and egg type of question. Which

do wedo first; choosethemetricsof interestor validate themetrics? Sincethesemetricsarealready

in use, I havechosen to validate them first. The next stepwill be to choosefrom among the

measures(valid metrics) asuiteof themthat is the smallestsetof measuresthat is bothnecessary

and sufficient to measurethe importantdimensions of the software. The stepsinvolved are:

1. Identify important dimensionsof the software.

2. Classifymeasuresby thedimension(s) they measure.

3. Usemultivariate statistical methods to investigate the parallelism/orthogonality of the

capturedmeasures.

It is not beneficial to measurethesamedimension of an object by more thanone method. Each

method will have its own degreeof accuracyand its own cost of application. Oncethenecessary

degreeof accuracyhasbeenestablished,the most cost effective method that delivers that level of

accuracyshouldbe the measurementof choice. When building modelswith unvalidatedmetrics the

degree of accuracy cannot be known.

Fenton [1994] argued that much of the software measurement work published to date is

scientifically flawed. Fenton is not the only scientist who has observed this lack of scientific

precision. Baker, et al., [1990] said as much when they wrote that research in software metrics often

is suspect because of a lack of theoretical rigor. Li and Henry [1993a] argued that validation is
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necessaryfor the effective useof software metrics. Schneidewind [1992]statedthat metricsmust

bevalidated to determinewhether they measurewhat it is they are allegedto measure. Weyuker

[1988] statedthat existing andproposed softwaremeasuresmust be subjectedto anexplicit and

formal analysisto defme thesoundnessof their properties.

McCabe failed to validate his complexity metric. Gilb referencedempirical testingashis

source of verification and validation, i.e., there was no theoretical validation of Gilb's metrics.

Halstead'sequationsweretestedstatistically. McCall definedmetrics basedonheuristics. A metric

was acceptedby McCall if achosensamplefell within a 90% confidence interval [McCall, et al.,

1977]. DeMarcoemployedno theoreticalbasein thevalidation of his metrics. Li andHenry [1993]

usedstatisticalanalysisto validatethe prediction of maintenanceeffort by thegroup of metricsthat

theypublished. No theoreticalvalidation was attemptedby Li and Henry. ChidamberandKemerer

mentionedmeasurementtheory in their evaluationof eachmetric but madeno attempt to assigna

scaleto the metrics (seetheparagraphon scalesin sectionII for anexplanationof the importance

of scaleto the valid interpretationof a measurement).Lorenzand Kidd [1994]only usedheuristics

to validate their metrics.

Software metrics and measurement theory

Measurement theory was first used in software metric research to validate the myriad

complexity metrics which dominated the early research in the field. Correlations were expected to

exist between the complexity of a project and the achievement of acceptable parameters in its

development. This was the rationale for the interest in software complexity and the development

of metrics to measure this complexity [Anderson, 1992].
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When defining a measure, first one must designate precisely the attribute to be measured,

e.g., the height of humans. Then a model is specified that captures the attribute, e.g., stand up

straight, take off your shoes, do not include hair height in the measurement. The congruence that

comes from the model must represent the attribute being measured, i.e., the intuitive order of the

objects, with respect to the attribute being measured, must be preserved by the model. Finally, an

order-preserving map from the model to a number system is defmed, e.g., if we observe that Harry

is taller than Dick, any measurement that we take of their height must result in numbers or symbols

that preserve this relationship. [Baker, et al., 1990]

Before a model can be proposed, it must be known what is being measured. This basic

measurement principle has been ignored in much of the software metric work of record. It is

fundamental to measurement theory that the measurer have an intuitive understanding, usually based

on observation, of the attribute being measured [Fenton, 1991 ].

The object-oriented paradigm

An object combines both data structure and behavior in a single entity. Object-oriented

software is organized as a collection of explicit objects. By contrast, data structure and behavior are

loosely connected in traditional programming [Rumbaugh, et al., 1991]. Authors have not been in

agreement about the characteristics that identify the object-oriented approach. Henderson-Sellers

[1991] listed information hiding, encapsulation, objects, classification, classes, abstraction,

inheritance, polymorphism, dynamic binding, persistence, and composition as having been chosen

by at least one author as a defining aspect of object-orientation. Rumbaugh, et al. [1991] added
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identity, Smith [1991] addedsingle type and Sully [1993]addedthe unit building block to this list

of defining aspects.

Theold softwaremetricsdonot take into considerationthesenew concepts.Therefore,these

characteristicsnecessitatethe advent of new metrics to measureobject-oriented software. The

recentexplosionof object-orientedsoftwaremetrics (Li andHenry,1993;ChidamberandKemerer,

1994;andLorenzandKidd, 1994)hashit the scenewith little validation beyond regression analysis

of observed behavior.

Research objectives

"Validation of a software measure is the process of ensuring that the measure is a proper

numerical characterization of the claimed attribute" [Baker, et al., 1990]. Fenton [1991] described

two meanings of validation. Validation in the narrow sense is the rigorous measurement of the

physical attributes of the software. Validation in the wide sense determines the accuracy of any

prediction system using the physical attributes of the software. Accurate prediction is possibly the

most valuable outcome to be gained from software measurement. Prediction systems are validated

by empiric experiments. Accurate prediction relies on careful measurement of the predictive

attributes and careful observation of the dependent attributes. A model which accurately measures

the attributes is necessary but not sufficient for building an accurate prediction system [Fenton,

19941.

In the past, validation in the wide sense has been conducted without first carrying out

validation in the narrow sense. In this dissertation we intend to validate in the narrow sense the
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object-orientedsoftwaremetricsthat haveappearedin the literature. This is anecessarystepbefore

thesemetricscanbeusedto predict suchmanagerialconcernsascost, reliability, andproductivity.

Fenton[1991] states:"Good predictive theoriesonly follow oncewehaverigorous

measuresof specific well understoodattributes."

H. Research Approach and Methodology

Introduction

There are two fundamental problems in measurement theory; the first is the representation

problem. The representation problem is to find sufficient conditions for the existence of a mapping

from an observed system to a given mathematical system. Another aspect of the representation

problem is pointed out by Weyuker [1988]. How unique is the result of the measurement? A

measurement system must provide results that enable us to distinguish one class of object from

another class of object.

The other fundamental problem of measurement theory is the uniqueness problem.

Uniqueness theorems define the properties and valid operations of different measurement systems

and tell us what type of scale results from the measurement system. A uniqueness theorem

contributes to a theory of scales which says that the scale used dictates the meaningfulness of

statements made about measures based on the scale [Hong, et al., 1993; Roberts, 1979]. A

statement involving numerical scales is meaningful if the truth of the statement is maintained when

the scale involved is replaced by another (admissible) scale.
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The empirical/formal relational system. A relational system is a way of relating one entity (or

one event) of a set to another entity (or event) of the same set. In the physical sciences the relations

take the form longer than, heavier than, of equal volume, etc. In the social sciences (and thus in

software metric measurement) the relations take the form is preferred to, is not preferred to, is at

least as good as.

Definition 2.1: The ordinal relational system is an ordered tuple (A, R1 ..... Rn) where

A is a nonempty set of objects and the Ri, i=1 ..... n are k-ary relations on A. [Zuse,

1990]

The extensive structure. The extensive structure is an expansion of the ordinal relation system to

include binary operations on the objects of the set. The extensive structure is required to measure

objects on the interval or ratio scales. The binary operation in the empirical relational system usually

is designated concatenation, denoted by • . The usual manifestation of the binary operation in the

formal relational system is addition (+) although multiplication may be the proper operation under

some circumstances.

Definition 2.2: The extensive relational system is an ordered tuple

(A, R1 ..... Rn,. 1 ..... • m) where A is a nonempty set of objects, the RL i= I ..... n are k-

ary relations on A and the • j, j=l ..... rn are closed binary relations. [Zuse, 1990]

Homomorphism. A software measurement can be a homomorphism only if the meaning and

interpretation of the empirical relationship is clear [Zuse, 1990]. Let • denote is larger than (or is

preferred to). Given the empirical scale • (A,° ,- ) which we wish to measure using the real

numbers, we must map ° to o (B,>,+) while preserving the relation ° and the operation ° , i.e., • :

A° B is a valid mapping from A to B iffal • a2 ° bl > b2. In order to know whether or not the



relation and the operation have been preserved, the meaning and interpretation of • ,A,• ,and •

be precisely defmed.
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must

The weak order. Suppose you must select from a list of alternatives. For each pair of alternatives

al and a2, you prefer al to a2, you are indifferent between al and a2, or you prefer a2 to al. If you

always prefer al to a2, you are said to have a strict preference. If, however, you sometimes prefer

al to a2 and sometimes you are indifferent between al and a2, you are said to have a weak

preference. When you have a weak preference and the measurements exhibit the axioms of

completeness, reflexiveness, and transitivity, the alternatives are said to constitute a weak order.

Meaningfulness. When does it make sense to state:

• Program A is more complex than program B?

• Program A is twice as complex as program B?

• Program A is twice as maintainable as program B?

• Program A displays more quality than program B?

• The quality of program A was increased by 20%?

Following Zuse [1990], a statement is meaningful if and only if the truth of the statement holds

against all admissible transformations. Therefore, the meaningfulness of these statements depends

on the scale assignable to the metric used to measure the attribute of question.
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Ratio

Interval

Table 1

Properties of Measurement Scales
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Basic empirical operations

=,<,>, equality of intervals, and

ratios

=,<,>, and equality of intervals

Admissible transformations

M'=o M, • >0 similarity transformation

M'=o M+- , ° >0 positive linear

transformation

Ordinal =,<, and > M'--J(M) wheref(M) is any monotonic

increasing transformation

Nominal = M'=J(M) any one-to-one transformation

Scales. When groups of objects are measured on the nominal scale: many statistics can not be used;

proportions can be taken; the mode is the only meaningful measure of centrality. When groups of

objects are measured on the ordinal scale: rank order statistics and non-parametric statistics can be

used (assuming that the necessary probability distribution can be reasonably assumed to be present);

the median is the most powerful meaningful measure of centrality. When groups of objects are

measured on the interval scale: parametric statistics as well as all that apply to ordinal scales can be

used (it must be reasonable to accept that the necessary probability distribution is present); the

arthmefic mean is the most powerful meaningful measure of centrality. When groups of objects are

measured on the ratio scale: percentage calculations as well as all statistics that apply can be used;

the arithmetic mean is the most powerful meaningful measure of centrality.

Desirable properties of measures
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Intuition. A measure should make sense based upon the professional experience of the measurer.

Objects that appear better in the attribute being measured (based on the observer's experience) should

score higher on the metric being used. Objects which appear similar should score roughly about the

same.

Monotony. Monotony (or consistency) goes along with intuition. The measurement must be such

that very nearly the same score is achieved regardless of the measurer. Also, the order that the

objects appear in, in relation to each other, must be consistent from measurement to measurement.

Mathematical foundation. It is important that the measure be grounded in mathematical theory.

This foundation is necessary but not sufficient to make the metric an appropriate gauge of the

property being measured.

Understandability. The measurement process as well as the meaning of the metric should be

understandable by interested persons [Tsai, et al., 1986 (as cited in Zuse, 1990)].

Variation. If all articles score the same on a metric, then that metric measures nothing. In order to

measure a property there must be variation in measurement from object to object.

Dispersion. A measure is not precise enough if all articles fall into only a few categories. Ideally,

the measure should be sensitive enough to measure the appropriate property on a continuum.
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Especially grievous is the casethat assigns the property to a set with discreteunits of limited

cardinality [Weyuker, 1988(ascited in Zuse, 1990)].

Before a model can beproposed,it must be known what is being measured. This basic

measurementprinciple has beenignored in much of the software metric work of record. It is

fundamentalto measurementtheorythatthemeasurerhavean intuitive understanding,usuallybased

on observation,of the attributebeingmeasured[Fenton, 1991].

Thebasisof the methodologyto be followed will be Zuse'smodel.

Zuse's model

Beforea metric canbesaidto possessscale,1)enoughatomicmodificationsmustbedefined

to completelydescribeanychangesthatcanaffect the metric, 2) the partialpropertiesof themetric

must be ascertained,and 3) the intuition of the measurermust agreewith the partial properties

established.

Theconcatenationoperatorfor each metric must bedefined basedon the propertiesof the

metric. SinceZuse alwaysevaluatedstatic measuresof softwarecode,heusedthesequentialand

alternativestructuresof flowgraphsto def'methe concatenationoperation.

Definition 2.3: A flowgraph G=(E,N,s,t) is a directed graph with a finite, nonempty

set of nodes N, a finite, nonempty set of edges E, a start node so N, and a terminal

node t° N. Each node x. N lies on some path in G from s to t along the edges. An

edge is an ordered pair of nodes (x,y). [Zuse, 1990].
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Figure 1is a flowgraph. Nodes 3, 7, and 11arecalledpredicate(decision) nodes. Nodes4,

5, 8, and9 arecalledprocessingnodes. An atomicmodification to a flowgraphis definedasadding,

deleting,or transferring edgesor nodesin theflowgraph [Zuse, 1990]. Specifically, wedefine:

AM/as adding (deleting) an edge at an arbitrary location,

AM2 as adding (deleting) a node and an edge at an arbitrary location, and

AM3 as transferring an edge from one location in a flowgraph to another location.

Every metric increases, decreases, or remains

the same in reaction to each of these atomic

modifications. The partial property of the metric is

defined as the sensitivity of the metric to an atomic

modification, i.e., the measure M has the partial

property <=> (either it is less desirable, you have

indifference, or it is more desirable) with respect to the

atomic modification AM.

A measure can be placed on the ordinal scale if

the user accepts the partial properties of the atomic

modifications defined for that measure and the axioms

of the weak order (completeness, reflexiveness, and

Fig. 1

3

6

?

7,

a2_t
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transitivity) hold. A measure can be used as an interval scale if all conditions of the ordinal scale

are met and the distance defined on the interval is consistent for all intervals. A measure can be
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placedon theratioscaleif all conditionsof theordinal scalearemetandtheuseracceptsthebinary

concatenationoperation(s)defined on themeasure.

Let us now considerZuse'smethodologymore specifically.

Description of the measures. The original def'mition (as provided by the author of the measure)

is given for each metric. Each metric is then defined using a uniform method. The flowgraphs of

Zuse will be used whenever static code is being measured. Other, appropriate, structures will be

defined as needed for each metric being validated.

Examples of the calculation of the measures.

metric.

Simple and uniform examples are given for each

Partial property description of the measures. Atomic modifications are used on each metric to

describe its partial properties. Atomic modifications to flowgraphs consist of adding, deleting, and

moving edges and nodes. Other atomic modifications will be developed as necessary for other

structures.

Complete description of the measures as an ordinal scale. Atomic modifications are defined

sufficient to describe the criteria for the use of the metric as an ordinal scale then the measures are

examined to determine if the axioms of the weak order (completeness, reflexiveness, and transitivity)

hold.
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Consideration of the measures as an interval scale. The mapping which results from the atomic

modifications are compared to determine if a uniform difference between integer results can be

discerned.

Extensive structure and ratio scale. Binary concatenation operations to flowgraphs consist of

sequential and alternative addition of two flowgraphs. When it is necessary to define another

structure, other binary concatenation operations must also be defined. The ways the metrics respond

to the binary concatenation operations, as defined, are investigated to determine whether or not the

metric possesses the properties of the extensive structure. The rules are given for the use of the

metrics as a ratio scale.

Metric summary. The properties of the metric are summarized and compared to the properties of

similar metrics.

The seven steps of Zuse's model are applied to each metric to determine what meaningful

statements may be made using the information gleaned from the metric.
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Contribution and significance of this study

Many object-oriented metrics are being proposed. Because they have not been validated

using measurement theory, it is not clear that these metrics are valid measures of the attributes that

they claim to measure. Some of these metrics are touted as predictive without being rigorously

defined. This study looks at each of the object-oriented metrics and scrutinizes them for validity in

the narrow sense of Fenton [1991].

Does the metric measure what its author proposes to measure? If not, what can be said about

the metric in terms of what is being measured? Is there another metric which does measure the

desired attribute? Are the statistics used with the metric valid considering the scale attributed to the

metric? Is the measurement an assessment measurement or meant to be a predictive measurement?

Does the metric hold up under vigorous scrutiny of the conditions of representation and uniqueness?

Do intuitive and empirical understandings survive under all allowable transformations?

The answers to these questions are pertinent to the valid use of these metrics. Since the

collection of data for the calculation of metrics is very expensive [Deutsch and Willis, 1988], this

study will help the practitioner by separating those object-oriented metrics that are not worth the cost

of calculation from those that are and by differentiating those metrics that are valid for assessment

purposes from those that are valid for use in prediction systems.

Additionally, the software engineering community should gain insight into further use of the

metrics, other metrics which might replace them, the valid statistics that each metric supports, and

future research that needs to be carried out.
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